The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases
Artemis P. Simopoulos

doi: 10.3181/0711-MR-311

Updated information and services can be found at:
http://ebm.rsmjournals.com/content/233/6/674

This article cites 111 articles, 36 of which can be accessed free at:
http://ebm.rsmjournals.com/content/233/6/674#BIBL

40 online articles that cite this articles can be accessed at:
http://ebm.rsmjournals.com/content/233/6/674#otherarticles

The electronic version of this document was made possible by a donation:
IN MEMORY OF
Martin Farias III, PH.D.
1973-2008
Beloved Scientist, Teacher, Colleague, and Friend
from
All His Friends
at
University of North Texas Health Science Center
Fort Worth, TX
&
Irma Lerma Rangel College of Pharmacy
Texas A&M Health Science Center, Kingsville, TX

© 2008 Society for Experimental Biology and Medicine
The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases

ARTEMIS P. SIMOPOULOS
The Center for Genetics, Nutrition and Health, Washington, DC 20009

Several sources of information suggest that human beings evolved on a diet with a ratio of omega-6 to omega-3 essential fatty acids (EFA) of ~1 whereas in Western diets the ratio is 15/1–16.7/1. Western diets are deficient in omega-3 fatty acids, and have excessive amounts of omega-6 fatty acids compared with the diet on which human beings evolved and their genetic patterns were established. Excessive amounts of omega-6 polyunsaturated fatty acids (PUFA) and a very high omega-6/omega-3 ratio, as is found in today’s Western diets, promote the pathogenesis of many diseases, including cardiovascular disease, cancer, and inflammatory and autoimmune diseases, whereas increased levels of omega-3 PUFA (a lower omega-6/omega-3 ratio), exert suppressive effects. In the secondary prevention of cardiovascular disease, a ratio of 4/1 was associated with a 70% decrease in total mortality. A ratio of 2.5/1 reduced rectal cell proliferation in patients with colorectal cancer, whereas a ratio of 4/1 with the same amount of omega-3 PUFA had no effect. The lower omega-6/omega-3 ratio in women with breast cancer was associated with decreased risk. A ratio of 2–3/1 suppressed inflammation in patients with rheumatoid arthritis, and a ratio of 5/1 had a beneficial effect on patients with asthma, whereas a ratio of 10/1 had adverse consequences. These studies indicate that the optimal ratio may vary with the disease under consideration. This is consistent with the fact that chronic diseases are multigenic and multifactorial. Therefore, it is quite possible that the therapeutic dose of omega-3 fatty acids will depend on the degree of severity of disease resulting from the genetic predisposition. A lower ratio of omega-6/omega-3 fatty acids is more desirable in reducing the risk of many of the chronic diseases of high prevalence in Western societies, as well as in the developing countries. Exp Biol Med 233:674–688, 2008

Key words: balanced omega-6/omega-3 ratio; dietary omega-3 fatty acids; inflammation; cardiovascular disease; chronic diseases; diet-gene interactions

Introduction

The interaction of genetics and environment, nature, and nurture is the foundation for all health and disease. In the last two decades, using the techniques of molecular biology, it has been shown that genetic factors determine susceptibility to disease and environmental factors determine which genetically susceptible individuals will be affected (1–6). Nutrition is an environmental factor of major importance. Using the tools of molecular biology and genetics, research is defining the mechanisms by which genes influence nutrient absorption, metabolism and excretion, taste perception, and degree of satiation; and the mechanisms by which nutrients influence gene expression. Whereas major changes have taken place in our diet over the past 10,000 years since the beginning of the Agricultural Revolution, our genes have not changed. The spontaneous mutation rate for nuclear DNA is estimated at 0.5% per million years. Therefore, over the past 10,000 years there has been time for very little change in our genes, perhaps 0.005%. In fact, our genes today are very similar to the genes of our ancestors during the Paleolithic period 40,000 years ago, at which time our genetic profile was established (7). Humans today live in a nutritional environment that differs from that for which our genetic constitution was selected. Studies on the evolutionary aspects of diet indicate that major changes have taken place in our diet, particularly in the type and amount of essential fatty acids and in the antioxidant content of foods (7–11) (Fig. 1).

Today industrialized societies are characterized by 1) an
increase in energy intake and decrease in energy expenditure; 2) an increase in saturated fat, omega-6 fatty acids and trans fatty acids, and a decrease in omega-3 fatty acid intake; 3) a decrease in complex carbohydrates and fiber; 4) an increase in cereal grains and a decrease in fruits and vegetables; and 5) a decrease in protein, antioxidants and calcium intake (7, 9, 12–15) (Tables 1 and 2). The increase in trans fatty acids is detrimental to health as shown in Table 3 (17). In addition, trans fatty acids interfere with the desaturation and elongation of both omega-6 and omega-3 fatty acids, thus further decreasing the amount of arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid availability for human metabolism (18).

The beneficial health effects of omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were described first in the Greenland Eskimos who consumed a high seafood diet and had low rates of coronary heart disease, asthma, type 1 diabetes mellitus, and multiple sclerosis. Since that observation, the beneficial health effects of omega-3 fatty acids have been extended to include benefits related to cancer, inflammatory bowel disease, rheumatoid arthritis, and psoriasis (19).

Whereas evolutionary maladaptation leads to reproductive restriction (or differential fertility), the rapid changes in our diet, particularly the last 150 years, are potent promoters of chronic diseases such as atherosclerosis, essential hypertension, obesity, diabetes, arthritis and other autoimmune diseases, and many cancers, especially cancer of the breast (20), colon (21), and prostate (22). In addition to diet, sedentary lifestyles and exposure to noxious substances interact with genetically controlled biochemical processes leading to chronic disease.

In this review, I discuss the importance of the balance of omega-6 and omega-3 essential fatty acids in the prevention and treatment of coronary artery disease, hypertension, diabetes, arthritis, osteoporosis, other inflammatory and autoimmune disorders, cancer and mental health, and the mechanisms involved.
Imbalance of Omega-6/Omega-3

Food technology and agribusiness provided the economic stimulus that dominated the changes in the food supply (23, 24). From per capita quantities of foods available for consumption in the U.S. national food supply in 1985, the amount of EPA is reported to be about 50 mg per capita/day and the amount of DHA is 80 mg per capita/day. The two main sources are fish and poultry (25). It has been estimated that the present Western diet is "deficient" in omega-3 fatty acids with a ratio of omega-6 to omega-3 of 15–20/1, instead of 1/1 as is the case with wild animals and presumably human beings (7–11, 13, 26–28) (Table 4).

Before the 1940s cod-liver oil was ingested mainly by children as a source of vitamin A and vitamin D with the usual dose being a teaspoon. Once these vitamins were synthesized, consumption of cod-liver oil was drastically decreased, contributing further to the decrease of EPA and DHA intake. Table 5 shows ethnic differences in fatty acid concentrations in thrombocyte phospholipids, the ratios of omega-6/omega-3 fatty acids, and percentage of all deaths from cardiovascular disease (16).

An absolute and relative change of omega-6/omega-3 in the food supply of Western societies has occurred over the last 150 years. A balance existed between omega-6 and omega-3 for millions of years during the long evolutionary history of the genus Homo, and genetic changes occurred partly in response to these dietary influences. During evolution, omega-3 fatty acids were found in all foods consumed: meat, wild plants, eggs, fish, nuts and berries (29–38). Studies by Cordain et al. (39) on wild animals confirm the original observations of Crawford and Sinclair et al. (27,40). However, rapid dietary changes over short periods of time as have occurred over the past 100–150 yr is a totally new phenomenon in human evolution (13, 15, 41–43) (Table 6).

Table 2. Late Paleolithic and Currently Recommended Nutrient Composition for Americans

<table>
<thead>
<tr>
<th></th>
<th>Late Paleolithica</th>
<th>FNB-IOM 1989 recommendationsa</th>
<th>FNB-IOM 2005 recommendationsb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total dietary energy, (%)</td>
<td>33</td>
<td>12</td>
<td>10–35</td>
</tr>
<tr>
<td>Protein</td>
<td>46</td>
<td>58</td>
<td>45–65</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>21</td>
<td>30</td>
<td>20–35</td>
</tr>
<tr>
<td>Alcohol</td>
<td>~0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>P/S ratioc</td>
<td>1.41</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Cholesterol (mg)</td>
<td>520</td>
<td>300</td>
<td><300</td>
</tr>
<tr>
<td>Fiber (g)</td>
<td>100–150</td>
<td>30–60</td>
<td>38</td>
</tr>
<tr>
<td>Sodium (mg)</td>
<td>690</td>
<td>1100–3300</td>
<td><2300</td>
</tr>
<tr>
<td>Calcium (mg)</td>
<td>1500–2000</td>
<td>800–1600</td>
<td>1000–1300</td>
</tr>
<tr>
<td>Ascorbic acid (mg)</td>
<td>440</td>
<td>60</td>
<td>75</td>
</tr>
</tbody>
</table>

a Modified from Eaton et al. (13).
b Data from DRI Tables on the internet: http://www.iom.edu/CMS/3788/4574.aspx
c P/S, polyunsaturated to saturated fat.

Table 3. Adverse Effects of Trans Fatty Acidsa

<table>
<thead>
<tr>
<th>Decrease or inhibit incorporation of other fatty acids into cell membranes</th>
<th>Decrease high-density lipoprotein (HDL)</th>
<th>Inhibit delta-6 desaturase (interfere with elongation and desaturation of essential fatty acids)</th>
<th>Decrease serum testosterone (in male rats)</th>
<th>Cross the placenta and decrease birth weight (in humans)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase</td>
<td>Low-density lipoprotein (LDL)</td>
<td>Platelet aggregation</td>
<td>Lipoprotein (a) [Lp(a)]</td>
<td>Body weight</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cholesterol transfer protein (CTP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Abnormal morphology of sperm (in male rats)</td>
</tr>
</tbody>
</table>

a Modified from reference 17.

Biological Effects and the Omega-6/Omega-3 Ratio

There are two classes of essential fatty acids (EFA), omega-6 and omega-3. The distinction between omega-6 and omega-3 fatty acids is based on the location of the first double bond, counting from the methyl end of the fatty acid molecule. In the omega-6 fatty acids, the first double bond is between the 6th and 7th carbon atoms and for the omega-3 fatty acids the first double bond is between the 3rd and 4th.

Table 4. Ratios of Dietary Omega-6:Omega-3 Fatty Acids in the Late Paleolithic Period and in Current Western Diets (United States) (g/d)a

<table>
<thead>
<tr>
<th></th>
<th>Paleolithic</th>
<th>Western</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA:ALA</td>
<td>0.70</td>
<td>18.75</td>
</tr>
<tr>
<td>AA+DTA:EPA+DPA+DHA</td>
<td>1.79</td>
<td>3.33</td>
</tr>
<tr>
<td>Total</td>
<td>0.79</td>
<td>16.74</td>
</tr>
</tbody>
</table>

a LA, linoleic acid; ALA, linolenic acid; AA, arachidonic acid; EPA, eicosapentaenoic acid; DTA, docosatetraenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic acid. Reprinted with permission from reference (15).
carbon atoms. Monounsaturates are represented by oleic acid, an omega-9 fatty acid, which can be synthesized by all mammals including humans. Its double bond is between the 9th and 10th carbon atoms.

Omega-6 and omega-3 fatty acids are essential because humans, like all mammals, cannot make them and must obtain them in their diet. Omega-6 fatty acids are represented by linoleic acid (LA; 18:2(6)) and omega-3 fatty acids by α-linolenic acid (ALA; 18:3(3)). LA is plentiful in nature and is found in the seeds of most plants except for coconut, cocoa, and palm. ALA on the other hand is found in the chloroplasts of green leafy vegetables, and in the seeds of flax, rape, chia, perilla and in walnuts. Both EFA are metabolized to longer-chain fatty acids of 20 and 22 carbon atoms. LA is metabolized to arachidonic acid (AA; 20:4(6)), and omega-3 fatty acids are metabolized to archidonic acid (ω-6 desaturase) and omega-3 fatty acids by ω-3 desaturase. LA, the parent omega-6 fatty acid, and ALA, the parent omega-3 fatty acid, and their long-chain derivatives are important components of animal and plant cell membranes. In mammals, including humans, the cerebral cortex, retina, and testis and sperm are particularly rich in DHA. DHA is one of the most abundant components of the brain’s structural lipids. DHA, like EPA, can be derived only from direct ingestion or by synthesis from dietary EPA or ALA.

Mammalian cells cannot convert omega-6 to omega-3 fatty acids because they lack the converting enzyme, omega-3 desaturase. LA, the parent omega-6 fatty acid, and ALA, the parent omega-3 fatty acid, and their long-chain derivatives are important components of animal and plant cell membranes (Fig. 2). These two classes of EFA are not interconvertible, are metabolically and functionally distinct, and often have important opposing physiological functions. When humans ingest fish or fish oil, the EPA and DHA from the diet partially replace the omega-6 fatty acids, especially AA, in the membranes of probably all cells, but especially in the membranes of platelets, erythrocytes, neutrophils, monocytes, and liver cells (reviewed in references 8, 52). Whereas cellular proteins are genetically determined, the polyunsaturated fatty acid (PUFA) composition of cell membranes is to a great extent dependent on the dietary intake. AA and EPA are the parent compounds for eicosanoid production (8) (Tables 7–8, Fig. 3).

Because of the increased amounts of omega-6 fatty acids in the Western diet, the eicosanoid metabolic products from AA, specifically prostaglandins, thromboxanes, leukotrienes, hydroxy fatty acids, and lipoxins, are formed in larger quantities than those formed from omega-3 fatty acids, specifically EPA (8). The eicosanoids from AA are biologically active in very small quantities and, if they are formed in large amounts, they contribute to the formation of thrombus and atheromas; to allergic and inflammatory disorders, particularly in susceptible people; and to proliferation of cells. Thus, a diet rich in omega-6 fatty acids shifts the physiological state to one that is prothrombotic and proaggregatory, with increases in blood viscosity, vasoconstriction and decreases in bleeding time. Bleeding time is decreased in groups of patients with hypercholesterolemia, hyperlipoproteinemia, myocardial infarction, diabetes, polycythemia vera, and certain chronic infections.

Table 5. Ethnic Differences in Fatty Acid Concentrations in Thrombocyte Phospholipids and Percentage of All Deaths from Cardiovascular Diseasea

<table>
<thead>
<tr>
<th>Population</th>
<th>LA (%)</th>
<th>ALA (%)</th>
<th>AA (%)</th>
<th>EPA (%)</th>
<th>DHA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current United States</td>
<td>35</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Current United Kingdom and</td>
<td>38–50</td>
<td>13</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Greenland Eskimos</td>
<td>15.00</td>
<td>4.00</td>
<td>8.0</td>
<td>16.74</td>
<td>4.00</td>
</tr>
<tr>
<td>Current India, rural</td>
<td>5–6.1</td>
<td>0.5</td>
<td>1.6</td>
<td>8.3</td>
<td>26</td>
</tr>
<tr>
<td>Current India, urban</td>
<td>38–50</td>
<td>12</td>
<td>1</td>
<td>7</td>
<td>45</td>
</tr>
<tr>
<td>Current United Kingdom and</td>
<td>15.00</td>
<td>4.00</td>
<td>8.0</td>
<td>16.74</td>
<td>4.00</td>
</tr>
<tr>
<td>Greenland Eskimos</td>
<td>15.00</td>
<td>4.00</td>
<td>8.0</td>
<td>16.74</td>
<td>4.00</td>
</tr>
<tr>
<td>Current India, rural</td>
<td>5–6.1</td>
<td>0.5</td>
<td>1.6</td>
<td>8.3</td>
<td>26</td>
</tr>
<tr>
<td>Current India, urban</td>
<td>38–50</td>
<td>12</td>
<td>1</td>
<td>7</td>
<td>45</td>
</tr>
</tbody>
</table>

Data modified from reference 16.

Table 6. Omega-6/Omega-3 Ratios in Various Populations

<table>
<thead>
<tr>
<th>Population</th>
<th>ω6/ω3</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paleolithic</td>
<td>0.79</td>
<td>(13)</td>
</tr>
<tr>
<td>Greece prior to 1960</td>
<td>1.00–2.00</td>
<td>(15)</td>
</tr>
<tr>
<td>Current Japan</td>
<td>4.00</td>
<td>(41)</td>
</tr>
<tr>
<td>Current India, rural</td>
<td>5–6.1</td>
<td>(42)</td>
</tr>
<tr>
<td>Current India, urban</td>
<td>38–50</td>
<td>(42)</td>
</tr>
<tr>
<td>Current United Kingdom and</td>
<td>15.00</td>
<td>(43)</td>
</tr>
<tr>
<td>northern Europe</td>
<td>16.74</td>
<td>(13)</td>
</tr>
</tbody>
</table>

References 8, 52.
Elongation and desaturation of n-6 and n-3 polyunsaturated fatty acids

Mechanisms

Linoleic Acid Increases Low-Density Lipoprotein Oxidation and Severity of Coronary Atherosclerosis. Oxidative modification increases the atherogenicity of low-density lipoprotein (LDL) cholesterol. Oxidized LDL is taken up by scavenger receptors that do not recognize unmodified LDL leading to foam cell formation. Diets enriched with LA increase the LA content of LDL and its susceptibility to oxidation (53, 54). Reaven et al. (55) showed that a LA-enriched diet especially affects oxidation of small, dense LDL. Louheranta et al. (56) showed that as the percent of energy intake from LA increased from the lower quartile 2.9% to the highest 6.4% so did the LDL oxidation. In their study, the average energy from LA was 4.6%. In another small cross-sectional study, enhanced susceptibility of LDL to oxidize was associated with severity of coronary atherosclerosis (57).

Linoleic Acid Inhibits Eicosapentaenoic Acid Incorporation from Dietary Fish Oil Supplements in Human Subjects. Cleland et al. showed that LA inhibits EPA incorporation from dietary fish oil supplements in human subjects (58). Thirty healthy male subjects were randomly allocated into one of two treatment groups. One group was on a high LA and low saturated fatty acid diet, whereas the other group was on a low LA and low saturated fat diet. The difference in the low LA and low saturated fatty acid diet was made up with monounsaturated fatty acids (olive oil). After a 3-week run-in period, the subjects consumed a fish oil supplement containing 1.6 g EPA and 0.32 g DHA per day. After four weeks of fish oil
supplementation, the incorporation of EPA in neutrophil membrane phospholipids was highest in the lowest LA group, indicating that the ingestion of omega-6 fatty acids within the diet is an important determinant of EPA incorporation into neutrophil membranes. This study also shows that monounsaturated fatty acids, in this case olive oil, do not interfere with EPA incorporation.

Decreasing Linoleic Acid with Constant α-Linolenic Acid in Dietary Fats Increases (Omega-3) Eicosapentaenoic Acid in Plasma Phospholipids in Healthy Men. Liou et al. carried out a study in which decreasing levels of LA with constant ALA led to increases of EPA in plasma phospholipids in healthy men (59). The omega-6/omega-3 dietary ratio varied between 10/1 to 4/0 of LA/ALA. It is unfortunate that the authors did not have a lower ratio of 2–1/1 omega-6/omega-3, which is closer to the ratio on which humans evolved. At a ratio of 1/1, Zampelas et al. showed a decrease in C-reactive protein (CRP), which Liou et al. at a ratio of 4/1 did not show (60).

A Lower Omega-6/Omega-3 Ratio as Part of a Mediterranean Diet Decreases Vascular Endothelial Growth Factor. Ambring et al. studied the ratio of serum phospholipid omega-6 to omega-3 fatty acids, the number of leukocytes and platelets, and vascular endothelial growth factor (VEGF) in healthy subjects on an ordinary Swedish diet and on a Mediterranean-inspired diet that was high in fish and flaxseed oil (61). This is a very interesting and important study, because it clearly showed that the serum phospholipid ratio of omega-6/omega-3 fatty acids was substantially lowered after the Mediterranean diet versus the Swedish diet. The omega-6/omega-3 ratio was 4.72 ± 0.19 on the Swedish diet and 2.60 ± 0.19 on the Mediterranean diet (P < 0.0001). There was no change in CRP or interleukin-6 (IL-6), but the total number of leukocytes was 10% lower after the Mediterranean diet, the total number of platelets was 15% lower, and so was the serum VEGF, 206 ± 25 pg/mL versus 237 ± 30 on the Swedish diet (P = 0.0014). The authors concluded that “A Mediterranean-inspired diet reduces the number of platelets and leukocytes and VEGF concentrations in healthy subjects. This may be linked to higher serum concentrations of omega-3 fatty acids, which promote a favorable composition of phospholipids.” These findings are consistent with our studies on the traditional diet of Greece prior to 1960 that was rich in ALA, EPA and DHA and balanced in the omega-6/omega-3 ratio, which distinguished it from other Mediterranean diets (62, 63), by being similar in the omega-6/omega-3 ratio to the diet on which human beings evolved (7–13, 26–28).

As the Omega-6/Omega-3 Ratio Decreases, So Does the Platelet Aggregation. Freese et al. compared the effects of two diets rich in monounsaturated fatty acids, differing in their LA/ALA ratio on platelet aggregation in human volunteers (64). Both diets were similar in saturated, monounsaturated and polyunsaturated fatty acids. The results showed that platelet aggregation in vitro decreases as the ratio of LA/ALA decreases in diets rich in monounsaturated fatty acids.

The higher the ratio of omega-6/omega-3 fatty acids in platelet phospholipids, the higher the death rate from cardiovascular disease (16). Excessive amounts of omega-6 PUFA and a very high omega-6/omega-3 ratio, as is found in today’s Western diets, promote the pathogenesis of many diseases, including cardiovascular disease, cancer, and inflammatory and autoimmune diseases, whereas increased levels of omega-3 PUFA (a lower omega-6/omega-3 ratio), exert suppressive effects (65).

Plasma Omega-6/Omega-3 Ratio and Inflammatory Markers. Ferrucci et al. studied the relationship of plasma PUFA to circulating inflammatory markers in 1123 persons aged 20–98 years in a community-based sample (66). The total omega-3 fatty acids were independently associated with lower levels of pro-inflammatory markers [IL-6, IL-1ra, tumor necrosis factor-α (TNF-α), CRP], and higher anti-inflammatory markers [soluble IL-6r, IL-10, transforming growth factor-α (TGF-α)] independent of confounders. The omega-6/omega-3 ratio was a strong negative correlate of IL-10. The authors concluded, “Omega-3 fatty acids are beneficial in patients affected by diseases characterized by active inflammation.”

The Balance of Omega-6/Omega-3 Fatty Acids Is Important for Health: The Evidence from Gene Transfer Studies

Further support for the need to balance the omega-6/omega-3 EFA comes from the studies of Kang et al. (67, 68), which clearly show the ability of both normal rat cardiomyocytes and human breast cancer cells in culture to form all the omega-3’s from omega-6 fatty acids when fed the cDNA encoding omega-3 fatty acid desaturase obtained from the roundworm Caenorhabditis elegans (C. elegans). The omega-3 desaturase efficiently and quickly converted the omega-6 fatty acids that were fed to the cardiomyocytes in culture to the corresponding omega-3 fatty acids. Thus,
omega-6 LA was converted to omega-3 ALA and AA was converted to EPA, so that at equilibrium, the ratio of omega-6 to omega-3 PUFA was close to 1/1. Further studies demonstrated that the cancer cells expressing the omega-3 desaturase underwent apoptotic death whereas the control cancer cells with a high omega-6/omega-3 ratio continued to proliferate (69). More recently, Kang, et al. showed that transgenic mice and pigs expressing the C. elegans fat-1 gene encoding an omega-3 fatty acid desaturase are capable of producing omega-3 from omega-6 fatty acids, leading to enrichment of omega-3 fatty acids with reduced levels of omega-6 fatty acids in almost all organs and tissues, including muscles and milk, with no need of dietary omega-3 fatty acid supply (70–72). This discovery provides a unique tool and new opportunities for omega-3 research, and raises the potential of production of fat-1 transgenic livestock as a new and ideal source of omega-3 fatty acids to meet the human nutritional needs. Furthermore, the transgenic mouse model is being used widely by scientists for the study of chronic diseases and for the study of mechanisms of the beneficial effects of omega-3 fatty acids (73).

Table 8. Effects of Omega-3 Fatty Acids on Factors Involved in the Pathophysiology of Atherosclerosis and Inflammation

<table>
<thead>
<tr>
<th>Factor</th>
<th>Function</th>
<th>Effect of n-3 fatty acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arachidonic acid</td>
<td>Eicosanoid precursor; aggregates platelets; stimulates white blood cells</td>
<td>↓</td>
</tr>
<tr>
<td>Thromboxane A2</td>
<td>Platelet aggregation; vasoconstriction; increase of intracellular Ca²⁺</td>
<td>↓</td>
</tr>
<tr>
<td>Prostacyclin (PGI2/3)</td>
<td>Prevent platelet aggregation; vasodilation; increase cAMP</td>
<td>↑</td>
</tr>
<tr>
<td>Leukotriene (LTB4)</td>
<td>Neutrophil chemoattractant; increase of intracellular Ca²⁺</td>
<td>↓</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>A member of the acute phase response; and a blood clotting factor</td>
<td>↓</td>
</tr>
<tr>
<td>Tissue plasminogen activator</td>
<td>Increase endogenous fibrinolysis</td>
<td>↑</td>
</tr>
<tr>
<td>Platelet activating factor (PAF)</td>
<td>Activates platelets and white blood cells</td>
<td>↑</td>
</tr>
<tr>
<td>Platelet-derived growth factor (PDGF)</td>
<td>Chemotactant and mitogen for smooth muscles and macrophages</td>
<td>↓</td>
</tr>
<tr>
<td>Oxygen free radicals</td>
<td>Cellular damage; enhance LDL uptake via scavenger pathway; stimulate arachidonic acid metabolism</td>
<td>↓</td>
</tr>
<tr>
<td>Lipid hydroperoxides</td>
<td>Stimulate eicosanoid formation</td>
<td>↑</td>
</tr>
<tr>
<td>Interleukin 1 and tumor necrosis factor</td>
<td>Stimulate neutrophil O₂ free radical formation; stimulate lymphocyte proliferation; stimulate PAF; express intercellular adhesion molecule-1 on endothelial cells; inhibit plasminogen activator, thus, procoagulants</td>
<td>↓</td>
</tr>
<tr>
<td>Interleukin-6</td>
<td>Stimulates the synthesis of all acute phase proteins involved in the inflammatory response: C-reactive protein; serum amyloid A; fibrinogen; α₁-chymotrypsin; and haptoglobin</td>
<td>↓</td>
</tr>
<tr>
<td>C-reactive protein (CRP)</td>
<td>An acute phase reactant and an independent risk factor</td>
<td>↓</td>
</tr>
<tr>
<td>Endothelial-derived relaxation factor</td>
<td>Reduces arterial vasoconstrictor response</td>
<td>↑</td>
</tr>
<tr>
<td>VLDL</td>
<td>Related to LDL and HDL level</td>
<td>Increases sensitivity to insulin</td>
</tr>
<tr>
<td>HDL(a)</td>
<td>Decreases the risk for coronary heart disease</td>
<td>↑</td>
</tr>
<tr>
<td>Lipoprotein(a)</td>
<td>Lipoprotein(a) is a genetically determined protein that has atherogenic and thrombogenic properties</td>
<td>↓</td>
</tr>
<tr>
<td>Triglycerides and chylomicrons</td>
<td>Contribute to postprandial lipemia</td>
<td>↓</td>
</tr>
</tbody>
</table>

Omega-3 Fatty Acids and Gene Expression

Previous studies have shown that fatty acids released from membrane phospholipids by cellular phospholipases, or made available to the cell from the diet or other aspects of the extracellular environment, are important cell signaling molecules. They can act as second messengers or substitute for the classical second messengers of the inositide phospholipid and the cyclic AMP signal transduction pathways. They can also act as modulator molecules mediating responses of the cell to extracellular signals. Recently it has been shown that fatty acids rapidly and directly alter the transcription of specific genes (74). In the case of genes involved in inflammation, such as IL-1β, EPA and DHA suppress IL-1β mRNA whereas AA does not, and the same effect appears in studies on growth-related early response gene expression and growth factor (74). In the case of vascular cell adhesion molecule (VCAM), AA has a modest suppressing effect relative to DHA. The latter situation may explain the protective effect of fish oil toward colonic carcinogenesis, since EPA and DHA did not stimulate protein kinase C. PUFA regulation of gene expression extends beyond the liver and includes genes.
such as adipocyte glucose transporter-4, lymphocyte stearoyl-CoA desaturase 2 in the brain, peripheral monocytes (IL-1β, and VCAM-1) and platelets [platelet derived growth factor (PDGF)]. Whereas some of the transcriptional effects of PUFA appear to be mediated by eicosanoids, the PUFA suppression of lipogenic and glycolytic genes is independent of eicosanoid synthesis, and appears to involve a nuclear mechanism directly modified by PUFA.

Linoleic Acid and Arachidonic Acid Increase Atherogenesis: Evidence from Diet-Gene Interactions: Genetic Variation and Omega-6 and Omega-3 Fatty Acid Intake in the Risk for Cardiovascular Disease

As discussed above, leukotrienes are inflammatory mediators generated from AA by the enzyme 5-lipoxygenase. Since atherosclerosis involves arterial inflammation, Dwyer et al. hypothesized that a polymorphism in the 5-lipoxygenase gene promoter could relate to atherosclerosis in humans, and that this effect could interact with the dietary intake of competing 5-lipoxygenase substrates (75). The study consisted of 470 healthy middle-aged women and men from the Los Angeles Atherosclerosis study, randomly sampled. The investigators determined 5-lipoxygenase (5-LO) genotypes, carotid-artery intima-media thickness, markers of inflammation, CRP, IL-6, dietary AA, EPA, DHA, LA, and ALA with the use of six 24-hour recalls of food intake. The results showed that 5-LO variant genotypes were found in 6.0% of the cohort. Mean intima-media thickness adjusted for age, sex, height and racial or ethnic group was increased by 80 ± 19 μm from among the carriers of two variant alleles as compared with the carrier of the common (wild-type) allele. In multivariate analysis, the increase in intima-media thickness among carriers of two variant alleles (62 μm, P < 0.001) was similar in this cohort to that associated with diabetes (64 μm, P < 0.01) the strongest common cardiovascular risk factor. Increased dietary AA significantly enhanced the apparent atherogenic effect of genotype, whereas increased dietary intake of omega-3 fatty acids EPA and DHA blunted this effect. Furthermore, the plasma level of CRP of two variant alleles was increased by a factor of 2, as compared with that among carriers of the common allele. Thus, genetic variation of 5-LO identifies a subpopulation with increased risk for atherosclerosis. The diet-gene interaction further suggests that dietary omega-6 fatty acids promote, whereas marine omega-3 fatty acids EPA and DHA inhibit leukotriene-
mediated inflammation that leads to atherosclerosis in this subpopulation.

The prevalence of variant genotypes did differ across racial and ethnic groups with higher prevalence among Asians or Pacific Islanders (19.4%), blacks (24.0%) and other racial or ethnic groups (18.2%) than among Hispanic subjects (3.6%) and non-Hispanic whites (3.1%). Increased intima-media thickness was significantly associated with intake of both AA and LA among carriers of the two variant alleles, but not among carriers of the common alleles. In contrast, the intake of marine omega-3 fatty acids was significantly and inversely associated with intima-media thickness only among carriers of the two variant alleles. Diet-gene interactions were specific to these fatty acids and were not observed for dietary intake of monounsaturated, saturated fat, or other measured fatty acids. The study constitutes evidence that genetic variation in an inflammatory pathway—in this case the leukotriene pathway—can trigger atherogenesis in humans. These findings could lead to new dietary and targeted molecular approaches for the prevention and treatment of cardiovascular disease according to genotype, particularly in the populations of non-European descent (6).

Clinical Intervention Studies and the Omega-6/Omega-3 EFA Balance

The Lyon Heart Study was a dietary intervention study in which a modified diet of Crete (the experimental diet) was compared with the prudent diet or Step I American Heart Association Diet (the control diet) (76–79). The experimental diet provided a ratio of LA to ALA of 4/1. This ratio was achieved by substituting olive oil and canola (oil) margarine for corn oil. Since olive oil is low in LA whereas corn oil is high, 8% and 61% respectively, the ALA incorporation into cell membranes was increased in the low LA diet. Cleland et al. (58) have shown that olive oil increases the incorporation of omega-3 fatty acids whereas the LA from corn oil competes. In the Lyon Heart Study, the ratio of 4/1 of LA/ALA led to a 70% decrease in total mortality at the end of two years (76).

The Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico (GISSI) Prevenzione Trial participants were on a traditional Italian diet plus 850–882 mg of omega-3 fatty acids at a ratio of 2/1 EPA to DHA (80). The supplemented group had a decrease in sudden cardiac death by 45%. Although there are no dietary data on total intake for omega-6 and omega-3 fatty acids, the difference in sudden death is most likely due to the increase in EPA and DHA and a decrease of AA in cell membrane phospholipids. Prostaglandins derived from AA are proarrhythmic, whereas the corresponding prostaglandins from EPA are not (81). In the Diet and Reinfarction Trial (DART), Burr et al. reported a decrease in sudden death in the group that received fish advice or took fish oil supplements relative to the group that did not (82). Similar results have been obtained by Singh et al. (83, 84). Except for the Lyon Heart Study, most of the cardiovascular disease omega-3 fatty acids supplementation trials did not attempt to modify the consumption of other fat components, and specifically did not seek to reduce the intake of omega-6 fatty acids despite the fact that there is convincing support for such studies. The differences in the omega-6/omega-3 ratio in the background diets and the dose of EPA and DHA could be an important factor in studies with conflicting results in intervention trials on the role of EPA and DHA in patients with ventricular arrhythmias in which a beneficial effect was shown by Leaf et al. (85) but not by Raitt et al. (86).

Yokoyama et al. investigated the effects of EPA on major coronary events in hypercholesterolemic patients in a randomized open label, blinded analysis (87). Patients were randomly assigned to receive either 1800 mg of EPA with statin or statin only in a 5-year follow up. The results showed that EPA is a promising treatment for prevention of major coronary events, and especially nonfatal coronary events, in Japanese hypercholesterolemic patients. This is a very important finding because the Japanese already have a high fish intake. These findings further support the data from the study by Iso et al. that showed, compared with a modest fish intake of once a week or about 20 g/d, a higher intake was associated with substantially reduced risk of coronary heart disease, primarily nonfatal cardiac events, among middle aged persons (88).

The importance of balancing the LA (omega-6) to ALA (omega-3) ratio was shown in a randomized, controlled, 3-diet, 3-period crossover study in which 22 hypercholesterolemic subjects were assigned to 3 experimental diets: a diet high in ALA (ALA diet; 6.5% of energy) a diet high in LA (LA diet; 12.6% of energy), and an average American diet (AAD) for 6 weeks (89). Serum IL-6, IL-1β, and TNF-α concentrations and the production of IL-6, IL-1β, and TNF-α by peripheral blood mononuclear cells (PBMCs) were measured. The ratio of omega-6/omega-3 was 10/1 in AAD, 4.1/1 in the LA diet and 2/1 in the ALA diet. The results showed that on the ALA diet, IL-6, IL-1β, and TNF-α production by PBMCs and serum TNF-α concentrations were lower (P < 0.05 and P < 0.08 respectively) than with the LA diet or AAD. PBMC production of TNF-α was inversely correlated with ALA (P = 0.07) and with eicosapentaenoic acid (P = 0.03) concentrations in PBMC lipids with the ALA diet. Changes in serum ALA were inversely correlated with changes in TNF-α produced by PBMCs (P < 0.05). In this study the increased intake of dietary ALA elicited anti-inflammatory effects by inhibiting IL-6, IL-1β, and TNF-α production in cultured PBMCs. Changes in PBMC ALA and EPA derived from ALA are associated with beneficial changes in TNF-α release. The cardioprotective effects of ALA are mediated in part by a reduction in the production of inflammatory cytokines, IL-6, IL-1β, and TNF-α (60, 90). Other studies, in which the ratio of LA/ALA was not balanced, failed to decrease CRP or IL-6, IL-1β, or TNF-α (91), leading to wrong conclusions that
LA is not inflammatory, despite the fact that it has been shown by Toborek et al. in 2002 (92). These results are important because they strongly suggest that the ALA intake at a ratio of 1–2/1—which is simple to implement, as shown by Paschos et al. (90) and Zampelas et al. (60)—could lead to an anti-inflammatory state, which is beneficial to health and reduce the risk for heart disease beyond that achieved from lower LDL concentrations alone.

Studies carried out in India indicate that the higher ratio of 18:2ω6 to 18:3ω3 equaling 20/1 in their food supply led to increases in the prevalence of non-insulin diabetes mellitus (NIDDM) in the population, whereas a diet with a ratio of 6/1 prevented the increase in NIDDM (93).

James and Cleland have reported beneficial effects in patients with rheumatoid arthritis (94) and Broughton has shown beneficial effects in patients with asthma by changing the background diet (95). James and Cleland evaluated the potential use of omega-3 fatty acids within a dietary framework of an omega-6/omega-3 ratio of 3–4/1 by supplying 4 gm of EPA+DHA and using flaxseed oil rich in ALA. In their studies, the addition of 4 gm EPA and DHA in the diet produced a substantial inhibition of production of IL-1β and TNFα when mononuclear cell levels of EPA were equal or greater than 1.5% of total cell phospholipid fatty acids which correlated with a plasma phospholipid EPA level equal to or greater than 3.2%. These studies suggest the potential for complementarity between drug therapy and dietary choices that increased intake of omega-3 fatty acids and decreased intake of omega-6 fatty acids may lead to drug-sparing effects. Therefore, future studies need to address the fat composition of the background diet, and the issue of concurrent drug use. A diet rich in omega-3 fatty acids and poor in omega-6 fatty acids provides the appropriate background biochemical environment in which drugs function.

Asthma is a mediator driven inflammatory process in the lungs and the most common chronic condition in childhood. The leukotrienes and prostaglandins are implicated in the inflammatory cascade that occurs in asthmatic Airways. There is evidence of airway inflammation even in newly diagnosed asthma patients within 2–12 months after their first symptoms (96). Among the cells involved in asthma are mast cells, macrophages, eosinophils, and lymphocytes. The inflammatory mediators include cytokines and growth factors (peptide mediators) as well as the eicosanoids, which are the products of AA metabolism, which are important mediators in the underlying inflammatory mechanisms of asthma (Table 8; Fig. 3). Leukotrienes and prostaglandins appear to have the greatest relevance to the pathogenesis of asthma. The leukotrienes are potent inducers of bronchospasm, airway edema, mucus secretion, and inflammatory cell migration, all of which are important to the asthmatic symptomatology. Broughton et al. (95) studied the effect of omega-3 fatty acids at a ratio of omega-6/omega-3 of 10/1 to 5/1 in an asthmatic population in ameliorating methacholine-induced respiratory distress.

With low omega-3 ingestion, methacholine-induced respiratory distress increased. With high omega-3 fatty acid ingestion, alterations in urinary 5-series leukotriene excretion predicted treatment efficacy and a dose change in >40% of the test subjects (responders) whereas the non-responders had a further loss in respiratory capacity. A urinary ratio of 4-series to 5-series of <1 induced by omega-3 fatty acid ingestion may predict respiratory benefit.

Bartram et al. (97, 98) carried out two human studies in which fish oil supplementation was given in order to suppress rectal epithelial cell proliferation and prostaglandin E2 (PGE2) biosynthesis. This was achieved when the dietary omega-6/omega-3 ratio was 2.5/1 but not with the same absolute level of fish oil intake and an omega-6/omega-3 ratio of 4/1. More recently, Maillard et al. reported their results on a case control study (99). They determined omega-3 and omega-6 fatty acids in breast adipose tissue and relative risk of breast cancer. They concluded, “Our data based on fatty acid levels in breast adipose tissue (which reflect dietary intake) suggest a protective effect of omega-3 fatty acids on breast cancer risk and support the hypothesis that the balance between omega-3 and omega-6 fatty acids plays a role in breast cancer.” In a case-control study in Shanghai, China on the relationship between fatty acids and breast cancer, Shannon et al. concluded, “Our results support a positive effect of omega-3 fatty acids on breast cancer risk and provide additional evidence for the importance of evaluating the ratio of fatty acids when evaluating diet and breast cancer risk (20).”

Osteoporosis represents a major challenge to health care services, particularly with increases in the elderly population worldwide. Bone mineral accrual during childhood and adolescence plays a vital role in preventing osteoporosis. The identification of factors influencing peak bone mass is important for the prevention of osteoporosis and related fractures. Genetic factors are responsible for about 70% of the variance in bone mass (100, 101). Other factors include nutrition, physical activity, and body mass index (BMI) (102). Animal studies have shown that dietary intake of long-chain omega-3 fatty acids may influence both bone formation and bone resorption (103, 104) and an increase in periosteal bone formation (105, 106).

The dietary ratio of omega-6/omega-3 fatty acids and bone mineral density in older adults was studied in the Rancho Bernardo Study by Weiss et al. (107). The study was carried out in 1532 community-dwelling men and women aged 45–90 years, between 1988 and 1992. The average intake of total omega-3 fatty acids was 1.3 g/d and the average ratio of total omega-6/omega-3 fatty acids was 8.4 in men and 7.9 in women. There was a significant inverse association between the ratio of dietary LA to ALA and bone mineral density (BMD) at the hip in 642 men, 564 women not using hormone therapy, and 326 women using hormone therapy. The results were independent of age, body mass index, and lifestyle factors. An increasing ratio of total dietary omega-6/omega-3 fatty acids was also significant.
and independently associated with lower BMD at the hip in all women and at the spine in women not using hormone therapy. Thus, the relative amounts of dietary omega-6 and omega-3 fatty acids may play a vital role in preserving skeletal integrity of old age.

The study by Hogstrom et al. is unique in that it measured serum fatty acid concentrations rather than use a dietary recall questionnaire to determine fatty acid intake (108). The aim of the 8-year prospective and retrospective study was to investigate a possible role of fatty acids in bone accumulation and the attainment of peak bone mass in young postpubertal men. Key findings show a positive association between omega-3 fatty acids and BMD of the total body and spine, and the accumulation of BMD at the spine between 16 and 22 years of age in the cohort of healthy young men. This study is the first to examine the association between individual PUFAs, BMD, and bone mineral accrual. In summary, BMD of the total body measured at 22 years of age showed a significant negative correlation with serum concentrations of oleic acid and monounsaturated fatty acids, and a significant positive correlation with DHA and omega-3 fatty acids. BMD of the spine measured at 22 years of age showed a positive association with DHA and omega-3 fatty acids. Changes in BMD of the spine between 16 and 22 years of age showed a positive association with DHA and omega-3 fatty acids, and a negative association with the omega-6/omega-3 ratio (108).

The study by Hogstrom et al. (108) adds to the growing body of evidence that omega-3 fatty acids are beneficial to bone health. Animal models have suggested that omega-3 fatty acids may attenuate postmenopausal bone loss. Ovariectomized mice fed a diet high in fish oil had significantly less bone loss at the femur and lumbar vertebrae than did ovariectomized mice fed a diet high in omega-6 fatty acids (109). In vitro models using a preosteoblastic cell line, MC3T3-E1, indicated a greater production of the bone-formation markers alkaline phosphatase and osteocalcin after 48 hours of treatment with EPA than after treatment with ALA (110).

Omega-3 fatty acids play an important role in health and disease and favorably affect skeletal growth. The attainment of peak bone mass in adolescence and the prevention of age-related osteoporosis are potential positive effects of omega-3 fatty acids.

Psychologic stress in humans induces the production of proinflammatory cytokines such as interferon gamma (IFNγ), TNF-α, IL-6 and IL-1. An imbalance of omega-6 and omega-3 PUFA in the peripheral blood causes an overproduction of proinflammatory cytokines. There is evidence that changes in fatty acid composition are involved in the pathophysiology of major depression (111). Changes in serotonin (5-HT) receptor number and function caused by changes in PUFA provide the theoretical rationale connecting fatty acids with the current receptor and neurotransmitter theories of depression (112–116). The increased C20:4ω6/C20:5ω3 ratio and the imbalance in the omega-6/omega-3 PUFA ratio in major depression may be related to the increased production of proinflammatory cytokines and eicosanoids in that illness (114). There are a number of studies evaluating the therapeutic effect of EPA and DHA in major depression. Stoll and colleagues have shown that EPA and DHA prolong remission, that is, reduce the risk of relapse in patients with bipolar disorder (117, 118).

Kiecolt-Glaser et al. studied depressive symptoms, omega-6/omega-3 fatty acid ratio and inflammation in older adults (119). As the dietary ratio of omega-6/omega-3 increased, the depressive symptoms, TNF-α, IL-6, and IL-6 soluble receptor (sIL-6r) increased. The authors concluded that diets with a high omega-6/omega-3 ratio may enhance the risk for both depression and inflammatory diseases.

Dry eye syndrome (DES) is one of the most prevalent conditions. Inflammation of the lacrimal gland, the meibomian gland, and the ocular surface plays a significant role in DES (120, 121). Increased concentration of inflammatory cytokines, such as IL-1, IL-6, and TNFα have been found in tear film in patients with DES (122). Miljanovic et al. investigated the relation of dietary intake of omega-3 fatty acids and the ratio of omega-6 to omega-3 with DES incidence in a large population of women participating in the Women’s Health Study (123). A higher ratio of omega-6/omega-3 consumption was associated with a significantly increased risk of DES (OR: 2.51; 95% CI: 1.13, 5.58) for >15:1 versus <4:1 (P for trend = 0.01). These results suggest that a higher dietary intake of omega-3 fatty acids is associated with a decreased incidence of DES in women and a high omega-6/omega-3 ratio is associated with a greater risk.

Age-related macular degeneration (AMD) is the leading cause of vision loss among people 65 and older. Both AMD and cardiovascular disease share similar modifiable factors (124–128). Fish intake has been reported to have protective properties in lowering the risk of AMD (129–133), especially when LA intake was low (129, 130). In a study involving twins, Seddon et al. showed that fish consumption and omega-3 fatty acid intake reduce the risk of AMD whereas cigarette smoking increases the risk for AMD (134).

Conclusions and Recommendations

Western diets are characterized by high omega-6 and low omega-3 fatty acid intake, whereas during the Paleolithic period when human’s genetic profile was established, there was a balance between omega-6 and omega-3 fatty acids. Therefore, humans today live in a nutritional environment that differs from that for which our genetic constitution was selected.

The balance of omega-6/omega-3 fatty acids is an important determinant in decreasing the risk for coronary heart disease, both in the primary and secondary prevention of coronary heart disease.
Increased dietary intake of LA leads to oxidation of LDL, platelet aggregation, and interferes with the incorporation of EPA and DHA in cell membrane phospholipids.

Both omega-6 and omega-3 fatty acids influence gene expression. EPA and DHA have the most potent anti-inflammatory effects. Inflammation is at the base of many chronic diseases, including coronary heart disease, diabetes, arthritis, cancer, osteoporosis, mental health, dry eye disease and age-related macular degeneration. Dietary intake of omega-3 fatty acids may prevent the development of disease, particularly in persons with genetic variation, as for example in individuals with genetic variants at the 5-LO and the development of coronary heart disease.

Chronic diseases are multigenic and multifactorial. It is quite possible that the therapeutic dose of omega-3 fatty acids will depend on the degree or severity of disease resulting from the genetic predisposition.

In carrying out clinical intervention trials, it is essential to increase the omega-3 and decrease the omega-6 fatty acid intake in order to have a balanced omega-6 and omega-3 intake in the background diet. Both the dietary intake and plasma levels should be determined before and after the intervention study.
