A possible case of diffuse idiopathic skeletal hyperostosis (DISH, Ankylosing hyperostosis) in an orang-utan

Pongo pygmaeus pygmaeus (Linnaeus, 1760)

INTRODUCTION

On 27 January 1992, a male orang-utan Pongo pygmaeus pygmaeus (Linnaeus, 1760), named 'Sam', died of old age in the zoological gardens (Natura Artis Magistra) of Amsterdam, the Netherlands. The animal was born in 1950 on Borneo, Indonesia, and arrived in the Netherlands on 12 December 1952. The skin and skeleton of the deceased animal were prepared at the Zoological Museum, University of Amsterdam, the Netherlands (ZMA 24.488). Forty-two years is extremely old for a Bornean orang-utan (Becker 1991; 1993). The skeleton showed typical hyperostosis and calcification on the right side of the thoracic vertebrae, consistent with the skeletal disease known in human pathology under the name of Diffuse Idiopathic Skeletal Hyperostosis (DISH, ankylosing hyperostosis). In this article, the features of this case are described and the disease is discussed.
DISH
Diffuse Idiopathic Skeletal Hyperostosis (DISH) or ankylosing hyperostosis is a common skeletal disease of unknown etiology in man. Features consistent with DISH have been described in literature under different names (Table 1). The disease occurs after middle age, and more often in males than in females. The principal manifestations are ligamentous calcification and ossification of the anterolateral (anterior) part of the spinal column, sometimes leading to ankylosis. The appearance of the osteophytes has been described as 'dripping candle wax', involving three or four vertebral bodies. DISH is distinguished from ordinary spondylitis deformans by the absence of disc degeneration. The distal thoracic spine is the part of predilection. There is, in contrast with spondylitis deformans, an absence of erosions and sclerosis of the vertebral epiphysis.

Table 1 Synonyms for DISH

- Moniliform hyperostosis (Meyer & Forestier 1938)
- Spondylitis ossificans ligamentosa (Oppenheimer 1942)
- Senile ankylosing hyperostosis of the spine (Forestier & Rotes-Querol 1950)
- Ankylosing hyperostosis (Harris et al. 1974)
- Hyperostosis of the spine (Forestier & Lagier 1971)
- Diffuse idiopathic skeletal hyperostosis (Resnick, Shaul & Robins 1975)

As the name already indicates, the etiology and pathogenesis of DISH is unknown. Research so far has focused on possible metabolic-endocrine and toxic factors. The relation between diabetes mellitus and DISH may provide some insight. Diabetes is mysteriously associated with rheumatic conditions with proliferation of fibrous tissue (Dwosh 1983).

PATHOLOGICAL CHANGES IN THE DESCRIBED CASE
Autopsy on the dead *Pongo* was performed one day after death. A mild splenomegaly and some chronic ulcerations in the colon were found. Some mesenterial lymph-nodes were enlarged, having a purulent content. The intriguing pathology of the vertebrae became visible after cleaning the skeleton by maceration. The atlas shows a small osteophyte on the inner side of the lateral mass. The second cervical vertebra shows severe pathology (Fig. 1). The left inferior articular process shows severe macroscopic bone changes. The whole area of contact is covered with perforations and there are marginal osteophytes.

The appearance of the vertebral pathology has often led to confusion with ankylosing spondylitis and with spondylitis deformans. DISH and spondylitis deformans are often found together in one individual. In some cases there may be extraspinal manifestations in the form of bony spurs around the patellae, olecranon and calcaneus (Utsinger 1984; Quinet & Hadler 1988). In humans this is about 35 % (Utsinger 1984). Patients often complain about dysphagia due to compression of the oesophagus by the osteophytes. The compression is severe enough to make eating solid food a strenuous chore. Hyperglycaemia may occur and the incidence of diabetes mellitus is about 40 %. The therapy for DISH is symptomatic.

Figure 1 *Pongo pygmaeus pygmaeus* (ZMA 24488), second cervical vertebra: note the severe macroscopic bone changes on the left inferior articular process. [photogr. Rob 't Hart]
The spinous process is curved to the right. The body of this vertebra also shows pathological changes with marginal osteophytes. These features are consistent with cervical spondylosis.

deformans. The third and fourth cervical vertebra also shown marginal osteophytes. The following three cervical vertebrae (5-7) are fused together by grotesque new bone formation (Figs. 2, 3 & 4).
DISCUSSION

Ottow (1951) studied several skeletons of gorilla *Gorilla gorilla*, chimpanzee *Pan troglodytes* and orang-utan. Traces of spondylosis deformans were found in none of the 22 skeletons of orang-utan. Ottow (1951) cited Fox (1939), who studied 41 skeletons of orang-utan, two of which showed skeletal deformations consistent with spondylosis deformans. Cleverger et al. (1971) speculate on the possible role of *Mycoplasma* infections in the genitourinary and upper respiratory tract, and its possible role in the etiology of rheumatoid arthritis in primates. Hime et al. (1972) described a case of hypertrophic pulmonary osteoarthropathy in a 14 year old orang utan. Adams et al. (1987) described a case of ankylosing spondylitis in a 30 year old female gorilla *Gorilla gorilla*. Rothschild & Woods (1989) studied ninety-nine skeletons of adult lowland gorillas *Gorilla g. gorilla* for the evidence of monoarticular or osseous pathology. In 8 skeletons they found moderate to severe osteoarthritis. In 20 individuals (17 and 3) they found sacroiliac and reactive erosive pathology (spondyloarthropathy). Rothschild (1993) described this feature also in tufted marmosets *Callitrix jacchus*.

The features in the described case are inconsistent with spondylosis deformans, ankylosing spondylitis or spondyloarthropathy. The intervertebral spaces of the affected part of the spinal column are normal and the epiphyses show no signs of degeneration. The bizarre osteophytes are atypical for spondylosis deformans. The typical ‘dripping candle wax’ osteophytes on the antecardiac side are diagnostic for DISH. Unfortunately, no glucose levels in the blood of ‘Sam’ are known, but no clinical signs of diabetes are observed. From December 1991 until his death, he ate only soft food. This could be due to the dysphagia which is diagnostic for DISH in humans. The last 6 years of his life ‘Sam’ showed stiffness, especially in winter time. Almost forty percent of human patients with DISH are complaining about stiffness aggravated by cold and wet weather (Utsinger 1984).

We are not aware of any case of DISH in a mammal other than man.
ACKNOWLEDGEMENTS
We would like to thank Dr. Peter J.H. van Bree (Zoological Museum, University of Amsterdam) for bringing this interesting case to the attention of the first author and for lending some skeletons of orang-utan for comparison. We are indebted to Mr. Rob 't Hart who made the photographs.

REFERENCES
Fox, H., 1938 - Chronic arthritis in wild mammals - Transactions of the American Philosophical Society 8: 74-123
Oppenheimer, A., 1942 - Calcification and ossification of vertebral ligaments (spondylitis ossificans ligamentosa) - Radiology 38: 160-164
Quinet, R.J. & Hadler, N.M., 1988 - Mechanical problems of the dorsolumbar spine - In: Katz, W.A. (Ed.) - Diagnosis and management of rheumatic diseases - J.B. Lippincott Company, Philadelphia

received 14 February 1995
accepted 17 March 1995